Schwarz boundary value problem for the Cauchy-Riemann equation in a rectangle
نویسندگان
چکیده
منابع مشابه
Nvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition
Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...
متن کاملRiemann Boundary Value Problem for Triharmonic Equation in Higher Space
We mainly deal with the boundary value problem for triharmonic function with value in a universal Clifford algebra: Δ(3)[u](x) = 0, x ∈ R (n)\∂Ω, u (+)(x) = u (-)(x)G(x) + g(x), x ∈ ∂Ω, (D (j) u)(+)(x) = (D (j) u)(-)(x)A j + f j (x), x ∈ ∂Ω, u(∞) = 0, where (j = 1,…, 5) ∂Ω is a Lyapunov surface in R (n) , D = ∑ k=1 (n) e k (∂/∂x k) is the Dirac operator, and u(x) = ∑ A e A u A (x) are unknown ...
متن کاملSchwarz boundary problem on a triangle
In this paper, the Schwarz boundary value problem (BVP) for the inhomogeneous Cauchy-Riemann equation in a triangle is investigated explicitly. Firstly, by the technique of parquetingreflection and the Cauchy-Pompeiu representation formula a modified Cauchy-Schwarz representation formula is obtained. Then, the solution of the Schwarz BVP is explicitly solved. In particular, the boundary behavio...
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولPositive Solution for Boundary Value Problem of Fractional Dierential Equation
In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2016
ISSN: 1687-2770
DOI: 10.1186/s13661-016-0520-z